Computational Investigation of Locked Nucleic Acid (LNA) Nucleotides in the Active Sites of DNA Polymerases by Molecular Docking Simulations
نویسندگان
چکیده
Aptamers constitute a potential class of therapeutic molecules typically selected from a large pool of oligonucleotides against a specific target. With a scope of developing unique shorter aptamers with very high biostability and affinity, locked nucleic acid (LNA) nucleotides have been investigated as a substrate for various polymerases. Various reports showed that some thermophilic B-family DNA polymerases, particularly KOD and Phusion DNA polymerases, accepted LNA-nucleoside 5'-triphosphates as substrates. In this study, we investigated the docking of LNA nucleotides in the active sites of RB69 and KOD DNA polymerases by molecular docking simulations. The study revealed that the incoming LNA-TTP is bound in the active site of the RB69 and KOD DNA polymerases in a manner similar to that seen in the case of dTTP, and with LNA structure, there is no other option than the locked C3'-endo conformation which in fact helps better orienting within the active site.
منابع مشابه
Apoptosis induction in acute promyelocytic leukemia cells through upregulation of CEBPα by miR-182 blockage
MicroRNAs (miRNAs) involved in regulation of the genes. The CCAAT/enhancer-binding protein-α (CEBPα) is a crucial transcription factor for normal hematopoiesis and cell cycle that frequently disrupted in human acute myeloid leukemia (AML). The miR-182 up-regulation in several malignant diseases such as AML was reported, in the other hand bioinformatics analysis revealed CEBPα targeted by miR-18...
متن کاملEnzymatic synthesis of DNA strands containing α-L-LNA (α-L-configured locked nucleic acid) thymine nucleotides
We describe the first enzymatic incorporation of an α-L-LNA nucleotide into an oligonucleotide. It was found that the 5'-triphosphate of α-L-LNA is a substrate for the DNA polymerases KOD, 9°N(m), Phusion and HIV RT. Three dispersed α-L-LNA thymine nucleotides can be incorporated into DNA strands by all four polymerases, but they were unable to perform consecutive incorporations of α-L-LNA nucl...
متن کاملPolymerase chain reaction and transcription using locked nucleic acid nucleotide triphosphates.
Polymerase chain reaction amplification of a locked nucleic acid (LNA)-modified DNA strand and transcription reactions using LNA-A nucleoside 5'-triphosphate were successfully accomplished with DNA and RNA polymerases.
متن کاملPolymerase-directed synthesis of C5-ethynyl locked nucleic acids.
Modified nucleic acids have considerable potential in nanobiotechnology for the development of nanomedicines and new materials. Locked nucleic acid (LNA) is one of the most prominent nucleic acid analogues reported so far and we herein for the first time report the enzymatic incorporation of LNA-U and C5-ethynyl LNA-U nucleotides into oligonucleotides. Phusion High Fidelity and KOD DNA polymera...
متن کاملStrong positional preference in the interaction of LNA oligonucleotides with DNA polymerase and proofreading exonuclease activities: implications for genotyping assays.
The effect of locked nucleic acid (LNA) modification position upon representative DNA polymerase and exonuclease activities has been examined for potential use in primer extension genotyping applications. For the 3'-->5' exonuclease activities of four proofreading DNA polymerases (Vent, Pfu, Klenow fragment and T7 DNA polymerase) as well as exonuclease III, an LNA at the terminal (L-1) position...
متن کامل